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Abstract— In this paper, we present a constant-factor approx-
imation algorithm for the unsplittable flow problem on a path.
This improves on the previous best known approximation factor of
O(logn). The approximation ratio of our algorithm is 7+� for any
� > 0. In the unsplittable flow problem on a path, we are given a
capacitated path P and n tasks, each task having a demand, a profit,
and start and end vertices. The goal is to compute a maximum profit
set of tasks, such that for each edge e of P , the total demand of
selected tasks that use e does not exceed the capacity of e. This
is a well-studied problem that occurs naturally in various settings,
and therefore it has been studied under alternative names, such
as resource allocation, bandwidth allocation, resource constrained
scheduling, temporal knapsack and interval packing. Polynomial
time constant factor approximation algorithms for the problem
were previously known only under the no-bottleneck assumption
(in which the maximum task demand must be no greater than the
minimum edge capacity).

We introduce several novel algorithmic techniques, which might
be of independent interest: a framework which reduces the problem
to instances with a bounded range of capacities, and a new
geometrically inspired dynamic program which solves a special
case of the maximum weight independent set of rectangles problem
to optimality. In addition, we show that the problem is strongly
NP-hard even if all edge capacities are equal and all demands are
either 1, 2, or 3.

Keywords-unsplittable flow; resource allocation; maximum
weight independent set; constant factor approximation; strong NP-
hardness

1. INTRODUCTION

In the Unsplittable Flow Problem on a Path (UFPP), we
are given a path P = (V;E) with an integral capacity ue
for each edge e 2 E. In addition, we are given a set of n
tasks T where each task i 2 T is characterized by a start
vertex si 2 V , an end vertex ti 2 V , a demand di 2 N, and
a profit wi 2 N. A task i uses an edge e 2 E if e lies on
the path from si to ti. The aim is to compute a set of tasks
F � T with maximum total profit

P
i2F wi such that for
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each edge, the sum of the demands of all tasks in F that
use this edge does not exceed its capacity.

The name of this problem is motivated by an interpre-
tation as a multicommodity flow problem, where each task
corresponds to a commodity. The term “unsplittable” means
that the total amount of flow di from each commodity i
has to flow completely along the path from the source si
to the sink ti or not at all. There are several settings and
applications in which this problem occurs, and several other
interpretations of the problem. Therefore, this problem, and
close variants thereof, have been studied under the names
bandwidth allocation [9], [20], [29], admission control [32],
interval packing [21], temporal knapsack [10], multicom-
modity demand flow [19], unsplittable flow problem [6], [7],
[16], [18], scheduling with fixed start and end times [4],
and resource allocation [8], [13], [22], [23], [32]. In many
applications, the vertices correspond to time points, and tasks
have fixed start and end times. Within this time interval they
consume a given amount of a common resource, of which
the available amount varies over time.

UFPP is easily seen to be (weakly) NP-hard, since it
contains the Knapsack problem as a special case (in case the
path is just a single edge). In addition, Darmann et al. [22]
show that the special case where all profits and all capacities
are uniform is also weakly NP-hard. Chrobak et al. [21]
strengthen this result by showing strong NP-hardness in
this case. In addition, they show that the case where the
profits equal the demands is strongly NP-hard [21]. These
results show that the problem admits no FPTAS unless
P = NP . On the other hand, the special case of a single
edge (Knapsack) admits an FPTAS. When the number of
edges is bounded by a constant, UFPP admits a PTAS since
it is a special case of Multi-Dimensional Knapsack [25].

Most of the research on UFPP has focused on two re-
stricted cases: firstly, the special case in which all capacities
are equal has been well-studied, which is also known as the
Resource Allocation Problem (RAP) [8], [13], [22], [23],
[32]. A more general special case of UFPP is given by the
No-Bottleneck Assumption (NBA): in that case it is required
that maxi di � mine ue (this holds in particular for RAP).



We will denote this restriction of the problem by UFPP-
NBA. For UFPP-NBA, a (2+ �)-approximation algorithm is
known [19], which matches the earlier best approximation
ratio for RAP [13].

Both RAP and UFPP-NBA have been generalized in
various ways: in a scheduling context, constant factor ap-
proximation algorithms for RAP have been given for the
case that the start and end times of tasks are not fixed,
and can be chosen among several options [8], [32]. In a
network flow context, there is an extensive literature on
the generalization of UFPP-NBA to more general graphs,
in which a single path has to be chosen for each selected
terminal pair si, ti: For instance, Baveja and Srinivasan [11]
provide an O(

p
jEj)-approximation algorithm for UFPP-

NBA generalized to all graphs, improving on various earlier
results. A simpler combinatorial algorithm with the same
guarantee is given by Azar and Regev [5]. Chakrabarti
et al. [15], [16] also give an approximation algorithm for
all graphs, and the first constant factor approximation for
UFPP-NBA generalized to cycles. Chekuri et al. [19] obtain
a 48-approximation for the generalization of UFPP-NBA to
trees. In addition, many hardness results are known for UFPP
generalized to various graphs: for general graphs, it is hard
to approximate within a factor of 
(jEj1��) unless P =
NP [5], and for depth-3 trees the problem is APX-hard [27].
Hardness-of-approximation results are known even for the
special case with unit demands and capacities (the Edge
Disjoint Path Problem); see [2], [3]. When viewing UFPP
as a packing problem, the corresponding covering problem
has also been studied. In that case, tasks have costs instead
of profits, and the objective is to find a minimum cost set of
tasks F , such that for each edge, the sum of the demands
of all tasks in F that use this edge is at least its capacity.
Recently, Chakaravarthy et al. [14] designed a primal-dual
4-approximation algorithm for this problem.

The two main algorithmic techniques that have been used
in previous results on UFPP are dynamic programming and
rounding of solutions to the linear programming relaxation
of the problem. These techniques work well when the NBA
holds. However, there are several important obstacles that
prevent these techniques to be generalized to the general
case of UFPP. For example, Chakrabarti et al. [16] show
that under the NBA the natural LP-relaxation of UFPP has
a constant integrality gap. However, without this assumption
the integrality gap can be as large as 
(n) [16]. Moreover,
the NBA implies that if all tasks are �-large (see the
definition below), then in any solution there can be at most
2
�
1=�2

�
tasks which use each edge; see [16]. This property

is useful for setting up a dynamic program. Without the NBA
this is no longer possible.

Despite these obstacles, there are a few breakthrough
results for (general) UFPP: The best known polynomial time
algorithm achieves an approximation factor of O(log n) [7],
thus beating the integrality gap of the natural LP-relaxation.

Chekuri et al. [18] give a linear programming relaxation
for UFPP with integrality gap O(log2 n) [18]. Finally, there
is a (1 + �)-approximation algorithm known with quasi-
polynomial running time, which additionally requires that
the capacities and the demands are quasi-polynomial, i.e.
bounded by 2polylogn [6].

Thus, even though UFPP and its variants have been inten-
sively studied, in terms of polynomial time approximation
algorithms for the general case, much remains unknown:
the best known algorithm is an O(log n)-approximation
algorithm [7], and the best negative result is strong NP-
hardness [21].

1.1. Our Contribution

We present the first polynomial time constant-factor ap-
proximation algorithm for the general case of UFPP. The
algorithm has an approximation ratio of 7 + �, for every
� > 0. This answers an open question from [7], [18].

To obtain this result we introduce several new algorithmic
techniques, which are interesting in their own right. We
develop a useful viewpoint which allows us to reduce
the problem to a special case of the maximum weight
independent set of rectangles problem. In addition, we
design a framework which reduces the problem to solving
instances where essentially the edge capacities are within a
constant factor of each other. The techniques can be applied
and combined in various ways. For instance, for practical
purposes, we also sketch how our results can be used to
obtain a constant factor approximation algorithm with a
reasonable running time of only O(n4 log n). We now go
into more detail about these results, the new techniques we
introduce, and give an outline of the paper.

For a task i, denote by b(i) the minimum capacity among
all edges used by task i. For 0 < � � 1, we call a task i �-
small if di < �b(i) holds, and �-large otherwise. Similar to
many previous papers, for our main algorithm we partition
the tasks into ‘small’ and ‘large’ tasks, depending on �. For
the small tasks our main result is as follows: Given  > 0
and � > 0, if each task is (1 � )-small, then we present
a (3 + �)-approximation algorithm in Section 3. We remark
that a similar result is given by Chekuri et al. [18], who give
an O(log(1=)=3)-approximation algorithm if each task is
(1�)-small. Their result also applies to trees. To prove our
(3 + �)-approximation, we introduce a novel framework in
which the tasks are first grouped into smaller sets, according
to their b(i) value, such that the techniques for the NBA
case can be applied. So the resulting sets can be solved
via relatively standard dynamic programming, LP-rounding
and network flow techniques. (This is similar to e.g. [13],
[19].) Solutions to these smaller sets leave a small amount
of the capacity of each edge unused. In our framework we
recombine these solutions into a feasible solution for all
tasks.



For the remaining large tasks, we present the following
main result: for any integer k � 2, if all tasks are 1

k
-large,

we give a 2k-approximation algorithm in Section 4. This is
based on a geometric viewpoint of the problem: we represent
UFPP instances by drawing a curve in the plane determined
by the edge capacities, and representing tasks by axis-
parallel rectangles, that are drawn as high as possible under
this curve. The demand of a task determines the height of
its rectangle. Using a novel geometrically inspired dynamic
program, we show that in polynomial time, a maximum
weight set of pairwise non-intersecting rectangles can be
found. Such a set corresponds to a feasible UFPP solution.
In addition, we show that when every task is 1

k
-large, this

solution yields a 2k-approximative solution for UFPP. With
our dynamic program we contribute towards the well-studied
problem of finding a maximum weight independent sets of
(arbitrary) rectangles (MWISR). For the unweighted case
of this problem, a randomized O(log log n)-approximation
is known [17]. For the weighted case, there are several
O(log n)-approximation algorithms [1], [28], [31]. The al-
gorithm by Erlebach et al. [24] gives a PTAS for the case
that the ratio between height and width of rectangles is
bounded (note that this does not apply in the special case that
we need here for approximating UFPP). Our new dynamic
programming technique might be useful for further research
on this problem.

For our main algorithm, we partition the tasks into 1
2 -

small tasks and 1
2 -large tasks. For the first group, we

apply the aforementioned (3 + �)-approximation algorithm.
For the second group, our second algorithm gives a 4-
approximation. Returning the best solution of the two yields
the (7 + �)-approximation algorithm.

In addition, we give an alternative proof of the strong
NP-hardness of UFPP, which shows that a different re-
striction remains strongly NP-hard. In the existing NP-
hardness proofs [21], [22], arbitrarily large demands are
used in the reductions. In Section 5, we prove that the
problem is strongly NP-hard even for the restricted case
where all demands are chosen from f1; 2; 3g and capacities
are uniform (RAP). Note that in contrast to our hardness
result, it is known that in the slightly more restricted case
where the capacities and demands are uniform, the problem
admits a polynomial time algorithm [4].

In Section 6 we discuss further extensions, variants and
consequences, such as the O(n4 log n) time constant factor
approximation algorithm, and an algorithm which computes
a (2 + �)-approximative solution in the setting of resource
augmentation. To be precise, the latter algorithm returns
a (2 + �)-approximative solution which is feasible if we
increase the capacity of each edge by a factor of 1+ � (for
arbitrarily small � > 0 and � > 0). In addition, we discuss
how our results carry over to the generalization from a path
to a cycle network. We begin in Section 2 by introducing
notation and terminology. Due to space constraints, for full

proofs of our results we refer to our technical report [12].

2. PRELIMINARIES

We assume that the vertices of the path P = (V;E)
are numbered V = f0; : : : ;mg, and E = ffi; i + 1g j
0 � i � m � 1g. We assume that the tasks are numbered
T = f1; : : : ; ng. Recall that tasks are characterized by
two vertices si and ti with si < ti, and positive integer
demand di and profit wi. For each task i 2 T we denote
by Pi � E the edge set of the subpath of P from si to ti.
If e 2 Pi, then task i is said to use e. For each edge e we
denote by Te � T the set of tasks which use e. For a set
of tasks F we define its profit by w(F ) :=

P
i2F wi. Our

objective is to find a set of tasks F with maximum profit
such that

P
i2F\Te

di � ue for each edge e. For each task i
we define its bottleneck capacity b(i) by b(i) := mine2Pi

ue.
An edge e is called a bottleneck edge for the task i if e 2 Pi
and ue = b(i). In addition, we define for every task i that
`(i) := b(i) � di. Consider a vertex v 2 V and an edge
e 2 E with e = fx; x + 1g. We write v < e (or v > e) if
v � x (resp. v � x+ 1). For two edges e = fx; x+ 1g and
e0 = fx0; x0+1g in E, we write e < e0 if x < x0 and e � e0

if x � x0. In other words, we interpret an edge fx; x + 1g
simply as a number between x and x + 1. Without loss of
generality, we will assume throughout this paper that ue � 1
for all edges e and di � 1 for all tasks i; zero demands
and capacities can easily be handled in a preprocessing
step. Moreover, observe that one can easily adjust any given
instance to an equivalent instance in which each vertex is
either a start or an end vertex of a task. Therefore, we will
henceforth assume that m < 2n. Throughout this paper,
we will use the notations defined above to refer to the
UFPP instance currently under consideration; we will never
consider multiple instances simultaneously, so there is no
cause for ambiguity.

We define an �-approximation algorithm for a maxi-
mization problem to be a polynomial time algorithm which
computes a feasible solution for a given instance such that
its objective value is at least 1

�
times the optimal value.

Throughout, for a subset of the tasks F � T , OPT (F )
denotes an optimal solution for the UFPP instance restricted
to the task set F . The following simple fact shows how we
can combine our approximation algorithms for different task
subsets into one algorithm for all tasks.

Fact 1: Consider a UFPP instance with task set T , and a
partition fT1; T2g of T . If for i = 1; 2, there exists an �i-
approximation algorithm for the instance restricted to the
tasks in Ti, then there exists an (�1 + �2)-approximation
algorithm for the entire instance.

3. SMALL TASKS

In this section we present a (3 + �)-approximation al-
gorithm for any set of tasks which are (1 � )-small (for
arbitrarily small � > 0 and  > 0). In our main algorithm



(for a general set of tasks) we will invoke this algorithm as
a subroutine for all tasks that are 1

2 -small.
Our strategy here is to define groups of tasks such that the

bottleneck capacities of all tasks in one group are within a
certain range. This allows us to compute a feasible solution
for each group, whose profit is at most a factor 3+�0 smaller
than the profit of an optimal solution for the group. In
addition, each computed solution leaves a certain amount of
capacity of every edge unused. Therefore, we can combine
the solutions for a selection of groups into a feasible solution
for the entire instance, in a way that yields a (3 + �)-
approximation (with an appropriate choice of �0 for the
given �).

3.1. Framework

We define the framework sketched above. We group
the tasks into sets according to their bottleneck capac-
ities. Let ` 2 N be a constant. We define F k;` :=�
i 2 T j 2k � b(i) < 2k+`

	
for each integer k. Note that

this includes negative values for k, and that at most ` � n
sets are non-empty (only those will be relevant later). In
the sequel, we will present an algorithm which computes
feasible solutions ALG

�
F k;`

�
� F k;`. These solutions will

satisfy the following properties.

Definition 2: Consider a set F k;` and let �; � > 0. A set
F � F k;` is called (�; �)-approximative if

� w(F ) � 1
�
� w(OPT (F k;`)), and

�
P

i2F\Te
di � ue � � � 2k for each edge e such that

Te \ F k;` 6= ;. (Hence it is a feasible solution.)
An algorithm which computes (�; �)-approximative sets in
polynomial time is called an (�; �)-approximation algo-
rithm. We call the second condition the modified capacity
constraint.

Our framework consists of a procedure that turns an
(�; �)-approximation algorithm for each set F k;` into a�
`+q
`
� �
�

-approximation algorithm for all given tasks,
where q and � are chosen such that � = 21�q .

Lemma 3 (Framework): Let ` 2 N and q 2 N be
constants and let � = 21�q . Let the sets F k;` be defined
as stated above for an instance of UFPP. Assume we are
given an (�; �)-approximation algorithm for each set F k;`,
with running time O(p(n)) for a polynomial p. Then there
is a

�
`+q
`
� �
�

-approximation algorithm with running time
O(m � p(n)) for the set of all tasks.

Now we describe the algorithm that yields Lemma 3.
Assume that we are given an (�; �)-approximation algorithm
that computes solutions ALG

�
F k;`

�
� F k;`. The key

idea is that due to the unused edge-capacities of the sets
ALG

�
F k;`

�
, the union of several of these sets still yields

a feasible solution. With an averaging argument we will
show further that the indices k for the sets ALG

�
F k;`

�
that

we want to combine can be chosen such that the resulting

set is an
�
`+q
`
� �
�

-approximation. Formally, for each offset
c 2 f0; :::; `+q�1g we define �(c) = fc+i�(`+q) j i 2 Zg.
For each c 2 f0; :::; ` + q � 1g we compute the set
ALG(c) :=

S
k2�(c)ALG(F

k;`). We output the set with
maximum profit among all sets ALG(c), which is denoted
by ALG(c�). In Lemma 6 we will prove that the resulting
set is an ( `+q

`
� �)-approximation. First, in Lemma 5 we

will prove that each set ALG(c) is feasible (using that
� � 21�q). This requires the following property, which
follows from the path structure.

Proposition 4: Let F be a feasible UFPP solution such
that b(i) < c for all i 2 F . Then for every edge e,P

i2F\Te
di < 2c.

Lemma 5: For each c 2 f0; :::; `+q�1g the set ALG(c)
is feasible.

Proof sketch: Consider a set ALG(F k;`). By defini-
tion of (�; �)-approximative solutions, ALG(F k;`) leaves
� � 2k � 2k+1�q units of the capacity of every used
edge free. Observe that this is at least twice the maximum
bottleneck capacity of tasks in F k�(`+q);`. Therefore, by
Proposition 4, the set ALG(F k;`) [ ALG(F k�(`+q);`) is
feasible. In fact, it again leaves a fraction of the capacities
free, which makes it possible to continue this argument for
further sets ALG(F k�i(`+q)) with i � 2, and prove that
their union is feasible. This way it can be shown that for
each offset c, the set ALG(c) is feasible.

Lemma 6: Let F � denote an optimal solution of the
given instance of UFPP. For the offset c� it holds that
w(ALG(c�)) � `

`+q �
1
�
� w(F �).

Proof: Every task is included in ` different sets F k;`.
Using this fact, we calculate that
`+q�1X
c=0

w(ALG(c)) �

`+q�1X
c=0

X
k2�(c)

1

�
w
�
OPT

�
F k;`

��
=

1

�

X
k2Z

w
�
OPT

�
F k;`

��
�

1

�

X
k2Z

w
�
F � \ F k;`

�
=

`

�
w(F �):

So there must be a value c such that w(ALG(c)) � `
`+q �

1
�
� w(F �). In particular, this holds for c�.
Now we can prove Lemma 3, which completes our

framework.
Proof of Lemma 3: Lemma 5 shows that ALG(c�) is

feasible and Lemma 6 shows that ALG(c�) is a
�
`+q
`
� �
�

-
approximation. For computing ALG(c�) we need to com-
pute the set ALG

�
F k;`

�
for each relevant value k. There are

at most m` 2 O(m) relevant values k. Finding the optimal
offset c� can be done in O(m) steps. This yields an overall
running time of O (m � p(n)).

3.2. An Approximation Algorithm for Small Tasks

Now that we have developed the framework to translate
(�; �)-approximation algorithms for the sets F k;` into an



approximation algorithm for the entire instance (Lemma 3),
it remains to present such an (�; �)-approximation algo-
rithm. In this section, we will prove the following lemma,
and combine it with the framework to obtain a (3 + �)-
approximation algorithm for UFPP in case all tasks are
(1 � )-small. To get some intuition, the reader can think
of � being equal to minf�; =2g.

Lemma 7: Let � > 0, � > 0, and ` 2 N be constants,
and assume we are given an instance of UFPP in which all
tasks are (1� 2�)-small. Then for each set F k;`, there is a
(2 + 1+�

1�� ; �)-approximation algorithm.

In order to prove Lemma 7, we choose a � > 0 and
further partition the tasks into �-small tasks and �-large tasks
(assuming that � < 1 � 2�). For the �-small tasks, we can
use linear programming techniques and a result by Chekuri
et al. [19]. UFPP with task set T can be formulated in a
straightforward way as an integer linear program (IP):

max
X
i2T

wi � xi

X
i2Te

xi � di � ue 8e

xi 2 f0; 1g 8 i

The LP relaxation is obtained by replacing the constraint
xi 2 f0; 1g by 0 � xi � 1. Chekuri et al. [19] give an
algorithm for instances of UFPP-NBA with �-small tasks,
which returns a UFPP solution that is at most a factor f(�)
worse than the optimum of the LP relaxation. Here f(�) is
a function for which the limit is 1 as � approaches zero.

This result can be used for sets F k;`: By definition, tasks
in F k;` use only edges e with ue � 2k. Call these relevant
edges. It is therefore possible to choose the value � small
enough to ensure that the NBA holds, when considering only
the relevant edges and �-small tasks in F k;`. Furthermore,
modifying the capacities by choosing u0e = ue � � � 2k

decreases the capacities of relevant edges at most by a factor
(1 � �). Therefore the optimal value of the LP relaxation
also becomes at most a factor (1 � �) smaller. A detailed
analysis based on these observations yields:

Lemma 8: For every combination of constants � > 0,
0 < � < 1, and ` 2 N, there exists a � > 0 such that if all
tasks are �-small, then for each set F k;` there is a ( 1+�1�� ; �)-
approximation algorithm.

In case that � < 1 � 2� holds for the above �, the
remaining task is to find an algorithm for tasks in F k;` that
are both �-large and (1 � 2�)-small. When restricting the
instance to �-large tasks in F k;`, the essential property is
that for any edge e and any feasible solution F , there are at
most O

�
2`

�

�
tasks in F that use e. This property allows for

a straightforward dynamic program to be used to compute
an optimal solution (see e.g. [16]). This can be turned into a
(2; �)-approximate solution: since tasks are (1� 2�)-small,

it can be shown that in polynomial time, any solution F can
be partitioned into two sets which are both feasible for the
modified capacities. This yields the following lemma.

Lemma 9: Let � > 0, � > 0 and ` 2 N be constants with
� < 1� 2�, and assume we are given an instance of UFPP
in which all tasks are both (1�2�)-small and �-large. Then,
for each set F k;` there is a (2; �)-approximation algorithm.

Combining Lemmas 8 and 9 now yields Lemma 7:
Proof of Lemma 7: Given �, � and `, Lemma 8 shows

that there exists a � > 0 such that for the �-small tasks
an ( 1+�1�� ; �)-approximation algorithm exists for each F k;`.
The remaining tasks are both �-large and (1� 2�)-small. If
� � 1 � 2�, we are done. Otherwise, Lemma 9 shows that
we have a (2; �)-approximation algorithm for these tasks,
for each set F k;`. Together this gives an (2 + 1+�

1�� ; �)-
approximation algorithm for each F k;` (observe that Fact 1
also applies to (�; �)-approximation algorithms).

Theorem 10: For every choice of constants � > 0 and
 > 0, there is a polynomial time (3 + �)-approximation
algorithm for UFPP restricted to instances where every task
is (1� )-small.

Proof: Choose ` 2 N, q 2 N, � := 21�q and �0 > 0
such that 1�2� � 1� (hence all tasks are (1�2�)-small),
and `+q

`
�
�
2 + 1+�0

1��

�
� 3 + �, which is always possible 1.

Now, combining the framework using the chosen ` and q
(Lemma 3) with (2+ 1+�0

1�� ; �)-approximation algorithms for
F k;` (Lemma 7) yields a (3 + �)-approximation algorithm.

4. LARGE TASKS

In this section we provide a polynomial time 2k-
approximation algorithm for instances consisting of
only 1=k-large tasks. Then we give our main algorithm,
which uses this as a 4-approximation algorithm for the set
of 1=2-large tasks. The main idea is to restrict to UFPP
solutions of a certain form: we will represent tasks by
rectangles drawn in the plane, and search for independent
sets of rectangles.

By (x1; y1; x2; y2) we will denote the axis-parallel rect-
angle in the two-dimensional plane with upper left point
(x1; y1) and lower right point (x2; y2). We will call two
rectangles (x1; y1; x2; y2) and (x01; y

0
1; x

0
2; y

0
2) compatible if

they do not overlap (i.e. do not share an internal point). More
precisely, they are compatible if at least one of the following
holds: x2 � x01, x02 � x1, y1 � y02, or y01 � y2.

Definition 11 (associated rectangle): With a task i we
will associate the rectangle (si; b(i); ti; `(i)).

1For instance, choose � small enough such that 1=(1 � �) � 1 + �0,
1� 2� � 1� , and such that there is an integer q � 2 with � = 21�q .
Now choose ` 2 N such that `+q

`
� 1 + �0. We obtain an approximation

factor of (2 + 1+�0

1��
) � `+q

`
� (2 + (1 + �0)2) � (1 + �0), which is at most

3 + � if �0 is sufficiently small.



Note that si and ti are integers since the path vertices
are labeled 0; : : : ;m, and that b(i) and `(i) := b(i)� di are
non-negative integers as well. Tasks are called compatible if
their associated rectangles are compatible. A task set F is
called an independent task set (ITS) if all tasks are pairwise
compatible.

The following geometric interpretation motivates this
choice of rectangles (see also Figure 1): For every edge
e = fx; x + 1g 2 E(P ) we draw a horizontal line
segment between (x; ue) and (x + 1; ue). We add vertical
line segments to complete this into a closed curve from (0; 0)
to (m; 0), called the capacity profile (see the bold grey curve
in Figure 1). For every task i, the associated rectangle is
now a rectangle of height di, drawn as high as possible
under the capacity profile. Using this viewpoint, it can easily
be checked that if a task set F is an ITS, it is a feasible
UFPP solution. To stress this fact, we will also call these
sets ITS solutions. In Section 4.1 we will show that if all
tasks are 1

k
-large, the value of an optimal (i.e. maximum

profit) ITS is at most a factor 2k worse than the value of an
optimal UFPP solution. We will prove this by showing that
any UFPP solution can be partitioned into 2k ITSs, which is
encoded by a 2k-coloring for the rectangles associated with
the solution. After that, we will give a dynamic programming
algorithm for finding an optimal ITS in Section 4.2.

4.1. The Coloring Lemma

The result in this section is based on the following
property.

Proposition 12: Let F be a feasible UFPP solution, and
let k � 2 be an integer, such that every task in F is 1=k-
large. Let e be a bottleneck edge for i 2 F . Then there are
at most k� 1 tasks j 2 F n fig that are incompatible with i
and use e.

Proof: Let the set F 0 � F nfig consist of all tasks that
are incompatible with i and that use e. Suppose jF 0j � k.
Consider j 2 F 0. Since j and i are incompatible, but both
use e and e is a bottleneck edge for i, it follows that
b(j) > `(i) = b(i) � di. Therefore, di +

P
j2F 0 dj �

di +
1
k

P
j2F 0 b(j) > di +

1
k
jF 0j(b(i) � di) � b(i) = ue,

contradicting that F is a feasible solution.
A partition fF1; : : : ; F`g of a task set F into ` ITSs will

be encoded by an `-coloring � of F . This is a function
� : F ! f1; : : : ; `g such that if �(i) = �(j), then i and j
are compatible. (So �(i) = x means that i 2 Fx.) An edge e
is called a separator for a task set F if it is a bottleneck
edge for some task i 2 F , such that all tasks in F that
use e are incompatible with i. So by Proposition 12, if e is
a separator edge, then there are at most k tasks in F that
use e, when F is a UFPP solution consisting of 1=k-large
tasks. A coloring � of F is called nice if for every edge e and
task i 2 F that has e as its bottleneck edge, all tasks that
use e and are incompatible with i are colored differently.

The main idea behind these notions and our construction
of a coloring is as follows: We will identify a separator
edge e, and consider the set F0 of tasks i with si < e,
and F1 of tasks i with ti > e. (Note that F0 [ F1 = F
and F0 \ F1 6= ;.) Unless F0 = F or F1 = F , we
may use induction to conclude that both admit a nice 2k-
coloring. Then, since e is a separator edge and the colorings
are nice, all tasks in F0 \F1 are colored differently in both
colorings. Therefore these can be combined into a single
nice 2k-coloring for F . In the case that F = F0 or F = F1,
we consider a bottleneck edge eB with minimum capacity,
and the set of tasks L with eB as bottleneck edge. A nice
2k-coloring of F can be deduced from a nice 2k-coloring
for FnL, using the fact that all tasks that are incompatible
with tasks in L have separator edges as bottleneck edges, by
choice of eB . This way we can prove the following lemma.

Lemma 13: Let F be a feasible UFPP solution, and
let k � 2 be an integer, such that every task in F is 1=k-
large. Then there exists a nice 2k-coloring for F . For every
integer k � 2, there exist sets F for which 2k colors are
necessary.

4.2. A Dynamic Programming Algorithm for Finding Opti-
mal ITSs

Throughout this section, we assume w.l.o.g. that all edge
capacities are different. This can be achieved by scaling
demands and perturbing capacities appropriately. The central
concept of our dynamic program is that of a corner (x; y; z),
which is defined by a pair of points (x; y) and (x; z) in the
plane. We first give an informal geometric interpretation of
corners: draw a horizontal line segment from point (x; y)
to the left until the capacity profile is hit, a horizontal line
segment from point (x; z) to the right until the capacity
profile is hit, and a vertical line segment between (x; y)
and (x; z) (see Figure 1). Together with the capacity profile,
these line segments enclose a region which we associate
with the corner. In our dynamic program, we will compute
for every corner the profit of an optimal ITS that fits entirely
into this region. This will be done using previously computed
values for ‘smaller’ corners. Informally, a corner (x0; y0; z0)
is smaller than the corner (x; y; z) if its region is a strict
subset of the region associated with (x; y; z). We now define
these notions precisely.

Definition 14: A triple (x; y; z) of integers is called a
corner if 0 � x � m, y � 0 and z � 0. For a corner
(x; y; z), we denote by wL(x; y) or simply wL the lowest
numbered path vertex such that for all i with wL � i < x, it
holds that ufi;i+1g > y. Similarly, wR(x; z) or simply wR

is defined to be the largest numbered path vertex such that
for all i with wR � i > x, it holds that ufi�1;ig > z. Hence,
wL � x and wR � x.

For each corner (x; y; z) we define a set C(x; y; z)
which—intuitively speaking—consists of all tasks which are



contained in the region defined by this corner.

Definition 15: For a corner (x; y; z), we denote by
C(x; y; z) the set of all tasks i 2 T for which at least one
of the following holds:

� wL(x; y) � si, ti � wR(x; z) and `(i) � maxfy; zg,
� wL(x; y) � si, ti � x and `(i) � y, or
� x � si, ti � wR(x; z) and `(i) � z.

Due to this definition, we say that task i fits into the corner
(x; y; z) or corner (x; y; z) contains i if i 2 C(x; y; z).
Hence, C(x; y; z) is the set of all tasks that fit into the corner.
Note that they are possibly incompatible.

For a given UFPP instance and corner (x; y; z), we denote
by P (x; y; z) the maximum value of w(F ) over all ITS solu-
tions F with F � C(x; y; z). An ITS F with F � C(x; y; z)
and w(F ) = P (x; y; z) is said to determine P (x; y; z). One
can easily verify that P (m; 0; umax) equals the value of an
optimal ITS solution, where umax := maxe2E(P ) ue. We
will now show how P (x; y; z) can be computed in various
cases. Proposition 16 collects the easy cases (which are
easily understood using the above geometric interpretation),
and Lemma 19 covers the complex case which gives the
main recursion formula to compute an optimal ITS. In
Proposition 16, statement (i) and (ii) show how to rewrite
a corner into ‘standard form’ without changing the corre-
sponding region. Statement (iii) deals with the case where
the corner corresponds to two disconnected regions, and
shows how to reduce this to two corners for which the region
is connected.

Proposition 16:
(i) If y = z, then C(x; y; z) = C(wR(x; z); y; umax), and

hence P (x; y; z) = P (wR(x; z); y; umax).
(ii) If x = 0 or y � ufx�1;xg then C(x; y; z) =

C(x; umax; z), and hence P (x; y; z) = P (x; umax; z).
(iii) If y < z, x � 1, y < ufx�1;xg and

ufx�1;xg � z < ufx;x+1g then C(x; y; z) =
C(x; y; umax) [ C(x; umax; z) and hence
P (x; y; z) = P (x; y; umax) + P (x; umax; z).

Because of Proposition 16 (i), we only need to consider
corners (x; y; z) where y < z or y > z holds. Due to the
symmetry we will only focus on corners (x; y; z) with y <
z. By Proposition 16 (ii), we may furthermore assume that
x � 1 and y < ufx�1;xg. Together with Proposition 16 (iii),
this shows that we may restrict our attention to the following
type of corners: A corner (x; y; z) is called proper if y < z,
x � 1, y < ufx�1;xg and either z < ufx�1;xg or z �
ufx;x+1g holds.

The main idea to handle a proper corner (x; y; z) is
as follows. Consider an ITS F that determines P (x; y; z).
Either F also fits into the smaller corner (x � 1; y; z), or
there exists a task j 2 F with `(j) < z and tj = x.
In the latter case, we show that F can be partitioned into
two task sets that fit into smaller corners, and one single

wL(x; b(i))

(si; b(i))
wR(si; b(i))

(x; z)wR(x; z)

(x; y)wL(x; y) wL(x; y)
(si; y)

(x; b(i))

wR(x; z)(x; z)

ii

Figure 1. On the left, a proper corner (x; y; z) and an ITS F � C(x; y; z)
is shown. When choosing a special task i 2 F , it holds that F n fig �
C(si; y; b(i)) [ C(x; b(i); z).

task i. More precisely, we show that there exists a task
i 2 F such that F n fig � C(si; y; b(i))[C(x; b(i); z). The
partition is illustrated in Figure 1. Such a task i is called
special. Informally, the essential property of a special task i
is that the rectangle (si; b(i); x; y) is compatible with any
associated rectangle of a task in F nfig, and does not overlap
with the capacity profile.

Definition 17: Let (x; y; z) be a proper corner and F �
C(x; y; z) be an ITS. A task i 2 F with ti � x is called
special with respect to F and (x; y; z) if (1) for all e with
si < e < x it holds that ue � b(i), and (2) there is no task
j 2 F nfig whose associated rectangle is incompatible with
the rectangle (si; b(i); x; y).

We now sketch how to find a special task i 2 F in case
that F * C(x � 1; y; z). We start with a task i 2 F such
that ti = x and `(i) < z holds. Now, assume there is a
task j 2 F whose associated rectangle is incompatible with
the rectangle (si; b(i); x; y). Then, j lies below i (that is,
b(j) � `(i)), and no associated rectangle of a task in F
crosses the line segment from (sj ; b(j)) to (x; b(j)). This
follows essentially from the fact that all tasks in F are
compatible with each other, and all associated rectangles
touch the capacity profile. We continue the same procedure
with j in the role of i until we find a special task i. This
yields the following lemma.

Lemma 18: Let (x; y; z) be a proper corner and F �
C(x; y; z) be an ITS. Then F � C(x � 1; y; z) or there
exists a special task i 2 F with respect to F and (x; y; z).

From Lemma 18 it follows that either
P (x; y; z) = P (x� 1; y; z), or the set F that determines
P (x; y; z) contains a special task i. Then the partition
indicated in Figure 1 yields:

Lemma 19: Consider a UFPP instance in which all edge
capacities are distinct. Let (x; y; z) be a proper corner. Then

P (x; y; z) = max

�
P (x� 1; y; z);

max
i2C(x;y;z);ti�x

n
wi + P

�
si; y; b(i)

�
+ P

�
x; b(i); z

�o�
:

Theorem 20: There is an O(n4) algorithm for computing
maximum profit ITS solutions for a UFPP instance.



Proof sketch: We call a corner triple (x; y; z) relevant
if both y and z equal the capacity of some edge (or are zero).
Our dynamic program uses Proposition 16 and Lemma 19
(or symmetric variants for the case y > z) to compute
P (x; y; z) for all relevant corner triples (x; y; z), using
previously computed values P (x0; y0; z0). Note that every
such corner (x0; y0; z0) that is used is actually relevant. By
considering corners in order according to an appropriate
size measure (related to their region), one can guarantee
that all necessary values P (x0; y0; z0) have previously been
computed. In the end we return P (m; 0; umax). Since we
may assume w.l.o.g. that the path has m < 2n edges, there
are at most O(n3) relevant corner triples. Evaluating the ex-
pressions in Proposition 16 and Lemma 19 takes time O(n).

Our results can be formulated as follows in terms of the
Maximum Weight Independent Set of Rectangles (MWISR)
problem:

Theorem 21: MWISR can be solved in time O(n4) for
instances with n axis-parallel rectangles, in which each
rectangle contains a point (x; y) such that no point (x; y0)
with y0 > y is part of a rectangle.

Recall that ITSs are feasible UFPP solutions. Combining
Theorem 20 with Lemma 13 (applied to an optimal UFPP
solution) yields:

Theorem 22: For every integer k � 2, there is an O(n4)
time 2k-approximation algorithm for UFPP restricted to
instances where every task is 1

k
-large.

Finally, we can combine this with Theorem 10 to obtain
our main result.

Theorem 23: For every � > 0 there is a (7 + �)-
approximation algorithm for the UFPP problem.

Proof: For the 1
2 -small tasks, we have a (3 + �)-

approximation algorithm (Theorem 10), and for the 1
2 -

large tasks, a 4-approximation algorithm (Theorem 22).
Returning the best solution of the two then yields a (7+ �)-
approximation algorithm (Fact 1).

5. STRONG NP-HARDNESS

In this section we shortly sketch our proof that UFPP is
strongly NP-hard for instances with demands in f1; 2; 3g,
which uses a reduction from Maximum Independent Set
in Cubic Graphs (for details see [12]). Let G; k be an
independent set instance: G 6= K4 is a connected cubic
graph (i.e. all vertices have degree 3), and the question is
whether G contains an independent set of size at least k. This
problem is NP-hard [26]. Let V (G) = fv1; : : : ; vng, and
E(G) = fe1; : : : ; emg. By Brooks’ Theorem (see e.g. [30]),
G is 3-colorable since G 6= K4 and G is connected. Such a
coloring can be found in polynomial time [30], so for our
polynomial transformation we may assume that a proper 3-
coloring � : V (G)! f1; 2; 3g is given.

: even edge

Tasks T :

Left edges Right edges

: odd edge

UFPP instance:Independent set
instance G: v1 v2 v3 v4e1 e3 e5e2 e4

7 6 7 6 7 6 7 7 7 6 4 16 6 7 6 14
2m..... .....0 1 2

demand = 1

demand = 3

demand = 2

demand = 1
v4

v3

v2

v1

capacity:
vertex:

corresponds to:

Path P :

: long high-profit
: short high-profit
: low profit

2m+ 2n

: �(vi) = 2

: �(vi) = 3

: �(vi) = 1

v2
e4

v4
e5

v3

v1
e2

e1
e3

Figure 2. An example of a graph G with coloring � and the resulting
instance UFPP(G).

We now construct an equivalent instance of UFPP as
follows; see Figure 2. (For ease of presentation, in the figure
we have chosen G to be a small non-cubic graph. This is no
problem for the transformation.) The path P has 2n+2m+1
vertices, labeled 0; : : : ; 2n+2m. An edge fi�1; ig 2 E(P )
is called an odd edge if i is odd, and an even edge otherwise.
For every vertex vi 2 V (G), introduce the following tasks:
First, introduce one long task with start vertex 0 and end
vertex 2m+2i�1. Next, let �1; �2; �3 be the indices of the
edges incident with vi, in increasing order. Introduce four
short tasks with the following start and end vertex pairs:
(0; 2�1� 1); (2�1; 2�2� 1); (2�2; 2�3� 1); (2�3; 2m+2i).
For all of these tasks for vertex vi, the demand is equal
to �(vi), and the profit is equal to �(vi)n times the number
of odd edges used by the task. The aforementioned tasks
will be called the high-profit tasks (for vi). Finally, for vi
we introduce one low-profit task from 2m + 2i � 1 to
2m + 2i with profit 1 and demand �(vi). Doing this
for all vertices gives the tasks of the UFPP instance.
It remains to set the edge capacities of P : For edges
e = f2k � 2; 2k � 1g 2 E(P ) for integer 1 � k � m, set
ue =

P
v2V (G) �(v). For edges e = f2k � 1; 2kg 2 E(P )

for integer 1 � k � m, set ue = (
P

v2V (G) �(v))� 1.
For edges e = f2k � 2; 2k � 1g 2 E(P ) and
e = f2k � 1; 2kg 2 E(P ) for integer m+ 1 � k � n+m,
set ue =

Pn
i=k�m �(vi). This gives the instance UFPP(G)

of UFPP. With an independent set I of G we associate
a solution of UFPP(G) of the following form: A set
F � T of tasks of UFPP(G) is said to be in standard
form if the following two conditions hold. Firstly, for
every i 2 f1; : : : ; ng, either F contains the long high-profit
task for vi and the low-profit task for vi, or F contains
all short high-profit tasks for vi. Secondly, for every
fvi; vjg 2 E(G), F does not contain both the long
high-profit task for vi and the long high-profit task for vj .

For every independent set I of G, we can construct a
set F in standard form by selecting the long high-profit task
for vi if and only if vi 2 I . It can be shown that any set F
in standard form is a feasible solution for UFPP(G), and that



its profit is M + x, where M is a large (but polynomially
bounded) constant and x is the number of included long
high-profit tasks. In the other direction, it can be shown that
every optimal solution F for UFPP(G) is in standard form:
because of the way the profits were chosen (depending on
the number of odd edges used by the task, and proportional
to the demand of the task), it can be verified that any optimal
solution must use the full capacity of all odd edges. Using
this observation and the fact that the demands were chosen
according to a proper coloring of G, one can show that every
optimal solution is in standard form, by arguing from right
to left along the path. Hence UFPP(G) has a solution with
profit at least M + x if and only if G has an independent
set of size at least x. This proves that UFPP is strongly
NP-hard. In fact, by extending this construction using high-
profit dummy tasks, which have to be selected in any optimal
solution, it can be shown that the problem remains NP-hard
for uniform edge capacities.

Theorem 24: UFPP is strongly NP-hard when restricted
to instances with demands in f1; 2; 3g, where all edges have
equal capacities.

6. DISCUSSION AND FURTHER RESULTS

We presented a number of new techniques for UFPP,
and combined these to obtain our main result, a (7 + �)-
approximation algorithm. By combining these techniques
and lemmas differently, we can obtain a number of related
results, which we will now shortly discuss. For proofs we
refer to our technical report [12]. We essentially partitioned
the tasks into three groups: the 1

2 -large tasks were handled
with a geometric dynamic program, in time O(n4) (Theo-
rem 22). For some � > 0, the �-small tasks were handled
with linear programming techniques (Lemma 8), which can
be done in time O(n4 log n) using flow techniques (see
also [4], [13]). The remaining tasks were handled with a
computationally much more costly dynamic program. By
omitting the latter step, partitioning the tasks into 1

9 -small
and 1

9 -large tasks, and applying our framework with ` = 3
and q = 5, we can prove:

Theorem 25: There is a 25:12-approximation algorithm
for UFPP with running time O(n4 log n).

In addition, using our techniques we can show that if we
increase the capacity of each edge by a factor of (1 + �)
for a small value � > 0 (called resource augmentation),
then we can compute in polynomial time a solution whose
value differs by at most a factor of (2+ �) from the original
optimum. In this case we do not need the dynamic program
for the large tasks from Section 4, and we may use an
optimal solution for the �-large tasks, instead of a (2; �)-
approximation (cf. Lemma 9).

Theorem 26: Let � > 0 and � > 0 be constants. There
is a polynomial time algorithm that, given a UFPP instance
with task set T , computes a task set F � T such that

� (2 + �)w(F ) � w(OPT (T )), and
� F is feasible if the capacity of each edge is increased

by a factor of (1 + �).

Chakrabarti et al. [16] show that any �-approximation
algorithm for UFPP implies a (1 + � + �)-approximation
algorithm for cycles (also called ring networks). Combined
with Theorem 23, this yields an (8 + �)-approximation
algorithm for the Unsplittable Flow Problem on Cycles. Note
that on a cycle, for each task i two possible paths can be
chosen from si to ti.

As we discussed in the introduction, constant factor ap-
proximation algorithms for many generalizations of UFPP-
NBA are known, such as in a scheduling context [8], [32]
or in a network flow context [16], [19]. However, all such
known results require the no-bottleneck assumption, or more
restrictively, consider the uniform capacity case. Now that
a constant approximation for general UFPP instances is
known, an obvious open question is for which generaliza-
tions of UFPP constant factor approximation algorithms can
be obtained. In particular, can our results be generalized to
other graph classes, such as trees?

The most intriguing question that we leave open is
whether there exists a PTAS for UFPP or whether the
problem is in fact APX-hard. This is also open for the
uniform capacity case (which implicitly satisfies the NBA).
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